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Econometrica, Vol. 64, No. 4 (July, 1996), 837-864 

CONSISTENT TESTING FOR SERIAL CORRELATION OF 
UNKNOWN FORM1 

BY YONGMIAO HONG 

This paper proposes three classes of consistent one-sided tests for serial correlation of 
unknown form for the residual from a linear dynamic regression model that includes both 
lagged dependent variables and exogenous variables. The tests are obtained by comparing 
a kernel-based normalized spectral density estimator and the null normalized spectral 
density, using a quadratic norm, the Hellinger metric, and the Kullback-Leibler informa- 
tion criterion respectively. Under the null hypothesis of no serial correlation, the three 
classes of new test statistics are asymptotically N(0, 1) and equivalent. The null distribu- 
tions are obtained without having to specify any alternative model. Unlike some conven- 
tional tests for serial correlation, the null distributions of our tests remain invariant when 
the regressors include lagged dependent variables. Under a suitable class of local 
alternatives, the three classes of the new tests are asymptotically equally efficient. Under 
global alternatives, however, their relative efficiencies depend on the relative magnitudes 
of the three divergence measures. Our approach provides an interpretation for Box and 
Pierce's (1970) test, which can be viewed as a quadratic norm based test using a truncated 
periodogram. Many kernels deliver tests with better power than Box and Pierce's test or 
the truncated kernel based test. A simulation study shows that the new tests have good 
power against an AR(1) process and a fractionally integrated process. In particular, they 
have better power than the Lagrange multiplier tests of Breusch (1978) and Godfrey 
(1978) as well as the portmanteau tests of Box and Pierce (1970) and Ljung and Box 
(1978). The cross-validation procedure of Beltrao and Bloomfield (1987) and Robinson 
(1991a) works reasonably well in determining the smoothing parameter of the kernel 
spectral estimator and is recommended for use in practice. 

KEYWORDS: Consistent tests, cross-validation, entropy, Hellinger metric, local and 
global alternatives, quadratic norm, serial correlation of unknown form, spectral estima- 
tion, strong dependence. 

1. INTRODUCTION 

CONSIDER A LINEAR AUTOREGRESSIVE distributed lag dynamic regression (AD) 
model 

(1) ()(B)Yt= c + a(l)(B)Xlt + + a(q)(B)Xqt + ut (t = 1,2, . . ., n), 

where the a(i)(B) = E%0 ajjB' are polynomials of order mj in lag operator B 
associated with the dependent variable Yt and the q exogenous variables X., c 

1 This is a revised version of earlier manuscripts entitled "Consistent, Regression-based Testing 
for Serial Correlation of Unknown Form" and "Consistent Spectrum-Based Testing for Serial 
Correlation of Unknown Form." I am most grateful to a co-editor, who went well beyond the call of 
duty in providing constructive suggestions and references. I would also like to thank D. Easley, J. 
Geweke, G. Jakubson, N. M. Kiefer, M. Pesaran, R. Shehadeh, T. Vogelsang, H. White, F. Xu, two 
referees, and seminars participants at Hong Kong University of Science and Technology, Queen's 
and Yale Universities, and University of Guelph for providing helpful comments and references on 
the earlier versions. A faculty research summer support from the Department of Economics at 
Cornell University is gratefully acknowledged. All errors are attributed solely to the author. 
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838 YONGMIAO HONG 

is a constant, and ut is an unobservable disturbance. The polynomial a(?)(B) is 
assumed to have all roots outside the unit circle, and is normalized by setting 
aoo = 1. Throughout it is also assumed that the Xit are covariance stationary 
with E(Xj ) < oo. 

Put a0 = (a10,..., amoo) and a1 = (a0j, al, ..., am1j)', j =1,...,q. Then a = 
(c, a',..., a')' is a Eq 0(m1 + 1) x 1 vector consisting of all unknown coeffi- 
cients in (1). We can estimate a by (e.g.) the ordinary least squares (OLS) 
method. A key condition for the consistency of the OLS estimator for a in (1) is 
that {ut) be serially uncorrelated. Serial correlation of {ut) may occur due to 
misspecification of (1), such as omitting relevant variables, choosing too low a 
lag order for Yt or the Xjt, or using inappropriate transformed variables. In 
general, any form of serial correlation will render inconsistent the OLS estima- 
tor for a and/or its usual standard covariance matrix estimator. 

Most existing tests are not consistent against serial correlation of unknown 
form. Consistent tests are useful when no prior information about the true 
alternative is available. Andrews and Ploberger (1994) recently proposed a class 
of consistent tests against weakly stationary strong mixing alternatives for the 
residual from a static regression model. In this paper, we propose some 
consistent tests for serial correlation of unknown form for the residual from (1), 
with possibly good power against strong dependence. We compare a kernel-based 
normalized spectral density estimator to the null normalized spectral density, 
using a quadratic norm, the Hellinger metric, and the Kullback-Leibler informa- 
tion criterion respectively. The null limit distributions of our tests are all N(0, 1) 
and are derived without having to specify an alternative model. Unlike some 
conventional tests (e.g. Box and Pierce (1970) (BP), Ljung and Box (1978) (LB), 
Durbin and Watson (1950, 1951)), the null distributions of our tests remain 
invariant whether the regressors include lagged dependent variables. Our ap- 
proach also provides an interpretation for BP, which can be viewed as a test 
based on a quadratic norm with the use of a truncated periodogram. 

Our tests are asymptotically equivalent under a suitable class of local alterna- 
tives, but their relative efficiencies under global alternatives depend on the 
relative magnitudes of the divergence measures. Within a suitable class of 
kernel functions, the Daniell kernel maximizes the power of our tests under 
both local and global alternatives. Many kernels deliver tests with better power 
than the truncated kernel-based test or the tests of BP and LB. Because the 
Lagrange multiplier (LM) tests of Breusch (1978) and Godfrey (1978) are similar 
in spirit to BP and LB in the sense that they all put uniform weights on the 
autocorrelations under tested, we expect that the new tests may have better 
power than the LM tests. Simulation shows that the new tests indeed have 
better power than the LM tests as well as BP and LB, against an AR(1) process 
and a fractionally integrated process. 

In Section 2, we describe our method and test statistics. The null asymptotic 
normality is derived in Section 3. In Sections 4 and 5, we investigate asymptotic 
local and global power properties respectively. In Section 6, we conduct a 
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TESTING FOR SERLAL CORRELATION 839 

simulation study of finite sample performance of our tests in comparison to 
some commonly used tests. The last section concludes the paper. All proofs are 
given in the Appendix. 

2. METHOD AND TEST STATISTICS 

Suppose (u,j is a stationary real-valued process with E(ut) = 0, autocovari- 
ance function R(Q), autocorrelation function p(j), and normalized spectral 
density function 

00 

f(v) = (2X)-1 E p(j)cos jc, cve [-r, r]. 
j= -00 

The hypotheses of interest are 

Ho:p(Q)=0 forall j]0 v.s. HA:p(j)/O forsome j $0. 

The hypothesis Ho is equivalent to f(f c) =fo( cv) for all tc - 7r, ir], where 
fo(cv) = 1/2ir for w E [- 7r, ir]. Let D(fi; f2) be a divergence measure for two 
spectral densities f1, f2 such that D(fi; f2) 2 0 and D(fi; f2) = 0 if and only if 
f1 =f2. Then a consistent test for Ho can be based on D(fn; fn ) where fn is a 
kernel estimator for f. Examples of D include the quadratic norm of f from fo, 

Q(f;fo) = [2i7r |(f(cv)-f0(jc))2 dcvj 

the Hellinger metric, 

H(f; fo)= (fl/2(ca) _fol/2( cv))2 d1/2, 

and the Kullback-Leibler information criterion (relative entropy), 

I(f; fo) = - f ln(f( v)/If0 ())f0 ( cv) dcv, 

where 12(f) = { cv E [- 1r, X ]: ff c) > 01. These measures are intuitively appeal- 
ing and have their own merits. The quadratic norm delivers a computationally 
convenient statistic that is simply a weighted average of squared sample autocor- 
relations with weights depending on the kernel. BP can be viewed as based on 
Q(f; fo) with f, being a truncated periodogram. Note that H(f; fo) is a 
quadratic norm between fl/2 and fol/2. Unlike Q(f; fo), which gives the same 
weight to the difference between f and fo whether the smaller of the two is 
large or small, H(f; fo) is relatively robust to outliers and is thus particularly 
suitable for contaminated data (cf. Pitman (1979)). Finally, entropy-based tests 
have an appealing information-theoretic interpretation. 

We consider three classes of consistent tests for Ho based on Q(fn; fo), 
H(fn;fo), and I(f,;fo) respectively. Let & be an estimator for a. Then the 
residual of (1) is 

Ut= a(0)(B)Yt- - a(1)(B)Xjt- -a (B)Xq 
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840 YONGMIAO HONG 

Define the residual-based sample autocorrelation function 

pj) = R(j)/R(O) (j = 0, + 1 ., + (n - 1)), 

where R() = n 1E- = 1li+ En Q-^ A kernel estimator for f is given by 

t= (21TY1 E7 Jtn+ k(t]/p-) (])cos( j)), w E - ir 

where the bandwidth Pn -" oc, Pn/n -*0; the kernel k satisfies the following 
conditions. 

ASSUMPTION A.1(a): k: R [-1,1] is a symmetric function that is continuous 
at zero and at all but a finite number of points, with k(O) = 1 and Jf 0. k2(z) dz < oo. 

The conditions that k(O) = 1 and k is continuous at 0 imply that for j small 
relative to n, the weight given to p(j) is close to unity (the maximum weight). 
Assumption A.1(a) includes the Bartlett, Daniell, general Tukey, Parzen, 
Quadratic-Spectral (QS), and truncated kernels (e.g. Priestley (1981, p. 441)). Of 
them, the Bartlett, general Tukey, and Parzen kernels are of compact support, 
i.e. k(z) = 0 for lz> 1. For these kernels, Pn is called the "lag truncation 
number," because the lags of order i >Pn receive zero weight. In contrast, the 
Daniell and QS kernels are of unbounded support; here Pn is not a "truncation 
point," but determines the "degree of smoothing" for fn. 

The first class of tests are a proper standardized version of Q(fn; f0): 

(2) n= (nQ2(n; fo)-Cn(k))/(2Dn(k))1/2 

=M(n E k2(=/pf)p2(C) -(Cn(k)) (2Dn(k))1/2, 

where the second equality follows by Parseval's identity, and 
n-1 

Cn(k) = (1 -k/n)k2(j/pn), 
j=1 

n-2 

Dn(k) = E (1 -j/n)(1 - (j + 1)/n)k4(j/Pn). 
j=l 

Given pn?*oo and Pn/n -0, p-7Dn((k)-*Dk)= k4(z)dz. Thus, one can 
replace Dn(k) by pnD(k) without affecting the asymptotic distribution of Mln. 
Under some additional conditions on k and/or Pn (cf. Robinson (1994, p. 73)), 
we have p- 1C (k) = C(k) +o(p- 1/2), where C(k) = fo k2(z)dz. In this case, 
we can also replace CA(k) by pnC(k). Thus, a more compact expression of Mln 
can be given as 

M* (n E k2(j/p )1p2(j) C (2pnD(k))112. 
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TESTING FOR SERIAL CORRELATION 841 

Based on raw observed data, Anderson (1993, p. 841) shows that the Cramer- 
von Mises test statistic for HO (which is based on a quadratic norm between the 
integrated sample spectrum and the null integrated spectrum) is asymptotically 
equal to n Ej7 = p2(j)/j2 It appears that Mln may be more flexible because we 
allow more room to choose weights via k and Pn. In particular, Min may have 
better power against strong dependence than the Cramer-von Mises test and 
other integrated spectrum based tests (e.g. Durlauf (1991)) because the latter 
put rather heavy weights on low order sample autocorrelations. In addition, the 
Cramer-von Mises test and other integrated spectrum based tests have nonstan- 
dard distributions. For these tests, the critical regions cannot be found in the 
basic statistical tables, and tabulations of the percentiles of the distributions are 
required. 

When k is the truncated kernel, i.e. k(z) = 1 for IzI < 1 and 0 for I zI> 1, we 
obtain 

(3) MT n E P2(j) 2Pn) X 
'j=1 

a generalized BP's test when Pn -> ??. Under HO, MTn is asymptotically equiva- 
lent to 

(4) MR = (nR2 -pn)/(2pn) 1/2 

where R2 is the squared multi-correlation coefficient from the AR(Pn) regres- 
sion 

(5) a u=p1 t = 929... n+ (S t #81 t- 1 + 82 ^t-2 + +Pn t-Pn + Pnt ( ,.,) 

where initial values utaP = 0 1 < t <Pn. Hence, M7Tn can be viewed as a test for 
the hypothesis that the Pn coefficients of the AR(Pn) model are jointly equal to 
zero. Because any stationary invertible linear process with continuous f can be 
approximated well by a truncated AR model with sufficiently high order (cf. 
Berk (1974)), MR will eventually capture all possible autocorrelations as long as 
more and more lags of uit are included as n increases. When MR rejects HO, t 
statistics in (5) may provide useful information about the pattern of serial 
correlation. We note that the power of MR may be different from that of MTn, 
because in general they are not asymptotically equivalent under HA. 

Like BP, MT and MR put equal weight for all Pn sample autocorrelations. 
Intuitively, this might not be the optimal weighting because for most stationary 
processes the autocorrelation decays to zero as the lag increases. Therefore, we 
expect that tests based on kernels other than the truncated kernel may give 
better power than BP, MTn and MR.2 Because the LM tests of Breusch (1978) 
and Godfrey (1978) are similar in spirit to BP (they are asymptotically equiva- 

2Another argument against the truncated kernel is that in practice one may be interested only in 
low order autocorrelations. Thus, a better test should put more weights on low order lags rather 
than put uniform weights on all Pn sample autocorrelations. 
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842 YONGMIAO HONG 

lent under a static regression model), we expect that the LM tests may also be 
less powerful than tests based on kernels rather than the truncated kernel. 

The other two classes of test statistics are3 

(6) = (2nH2(fn;fo)-Cn(k))/(2Dn(k))1/ 

(7) = (nI(fA; fo) -C(k))/(2Dn(k))1/2. 

For (6) and (7), we impose the following additional condition on k. 

ASSUMPTION A.1(b): fv Ik(z)I dz < oo and K(A) = (1/2ir)f1 k(z)e-izA dz ? 
0 for A E (-oo, oo). 

The absolute integrability of k ensures that its Fourier transform K exists. 
Assumption A.1 implies that K is a symmetric density. Because fn can be 
written as an integral of the convolution of Pn E7, _ K(pn( +2r])) with the 
periodogram of {ut} (cf. Robinson (1991a, (2.5))), it follows that fn( w) 2 0 for all 
w. Assumption A.1 includes the Bartlett, Daniell, Parzen, and QS kernels, but 
rules out the truncated and general Tukey kernels. 

3. ASYMPTOTIC NULL DISTRIBUTION 

To establish asymptotic null normality of our tests, we assume the following 
conditions. 

ASSUMPTION A.2: {ut) is identically and independently distributed (i.i.d.) with 
E(ut) = 0, E(u2) = o-o2 and E(u4) = /4 < oo. 

AsSUMPTION A.3: n a2( - a) = Op(1). 

Most earlier works assume i.i.d. normality.4 Circumstances occur where this 
assumption may fail. For example, it is well-known that stock price innovations 
often have highly leptokurtic distributions. Although Ljung and Box (1978, 
Section 4.4) conjecture that BP and LB are robust to nonnormality and support 
this by simulation, no formal justification was available in the literature. The 
fourth moment condition helps ensure asymptotic normality of the M.n While 
our tests are consistent against HA, we note that there is a gap between A.2 
and HO. The use of A.2 simplifies much of the asymptotic analysis because it 
involves higher moments of spectral estimates. An earlier version of this paper 
imposes the martingale condition under HO, but with rather restrictive moment 
conditions. 

3Under suitable additional conditions on k, we can also have more compact expressions 
M* = (2nH2(f ;f -pnC(k))/(2pnD(k))1/2 and M3*n = (nI(fn; o) -pnC(k))/(2pnD(k)) /2. 

Robinson (1991b) proposes a general class of tests for serial correlation, assuming only the 
martingale difference sequences for {u,} under Ho. 
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TESTING FOR SERIAL CORRELATION 843 

Assumption A.3 includes such estimators as OLS, adaptive asymptotically 
efficient weighted least squares, and maximum likelihood. It also includes 
estimators that are n112-consistent but not asymptotically normal, as may arise if 
{u,j exhibits strong dependence. 

We first establish asymptotic normality of Mln. 

THEOREM 1: SupposeAssumptionsA.1(a), A.2-A.3 hold. Let pn o_ co, pn/n -* 

0. Then 

Mln d N(0, 1). 

The estimator a (i.e. the use of ut in place of ut) has no impact on the 
limiting distribution of Mln. This is true even when the regressors include 
lagged dependent variables. This conclusion is in sharp contrast to some 
conventional tests, such as those of BP, LB, and Durbin and Watson (1950, 
1951). Intuitively, the use of ut may induce some finite adjustments for degrees 
of freedom when (1) includes lagged dependent variables, but these finite 
adjustments become negligible for Mln as Pn becomes large. 

When the truncated kernel is used, we obtain MTn. Comparing between MTn 
and BP, we have extended Box and Pierce's results in some directions. First, 
M7Tn applies to the residual from (1), whereas BP only applies to ARM A models 
of finite orders. As Breusch and Pagan (1980, p. 245) point out, BP is inappropri- 
ate when the regressors include both lagged dependent variables and exogenous 
variables. Second, the limiting distribution of M7Tn remains invariant whether 
lagged dependent variables are present, while BP has to adjust degrees of 
freedom according to the number of regressors. Finally, the null distribution of 
BP is derived under the normality assumption, while we do not impose it. 

Next, we establish the asymptotic equivalence between MlTn and MR under 
Ho. 

THEOREM 2: Suppose Assumptions A.1(a), A.2-A.3 hold. Let Pn o, p/nIn 
0. Then 

MR-MTn = op(1), and MR d N(0, 1). 

The conditions on Pn are much more restrictive for MR than for Mln, but it 
includes the logarithm rates delivered by such information criteria as Akaike's 
Information Criterion and the Bayesian Information Criterion for (5) (cf. Ng 
and Perron (1994)). 

Finally, we establish asymptotic equivalence among the Min under Ho. 

THEOREM 3: Suppose Assumptions A.1-A.3 hold. Let pn o o0, p/n -I0. Then 

M2n-M1n =op(1), M3n-M1n =op(1), M2n _d N(0, 1), 

and M3n *d N(0, 1). 
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844 YONGMIAO HONG 

4. ASYMPTOTIC LOCAL POWER 

For consistent tests, the asymptotic power approaches unity as n o-*c under 
HA at any given level 0 < ; < 1. To get a power value less than unity, we can 
either fix the size and move the alternative hypothesis closer to Ho as n -o 00, or 
fix the alternative and let the size or Type II error decrease to zero as n -> 00. 

The first approach is the familiar Pitman's local analysis, and the second is the 
nonlocal analysis (e.g. Bahadur (1960), Hodges and Lehmann (1956, Section 3)). 
They give different insights and conclusions for the Min. 

We first focus on local power analysis. For simplicity, we maintain Assumption 
A.2 and consider a sequence of specified models {ff } such that fn? -*fo as 
n -) oo. This leads to much simpler analysis and delivers conclusions identical to 
those that would be reached by fixing the model and moving the data generating 
process. Specifically, we consider 

Han: fn( W)=fo(w)+ang(), E[ ,w], 

where an-* 0 as n -> oo, and g: R -* R is a symmetric periodic (with periodicity 
2X) bounded continuous function with fYl g(w) dw =0. The condition 

I , g( w) do = 0 ensures that f ? is a normalized spectral density for all n 
sufficiently large. 

The next theorem delivers the rate an at which our tests have nontrivial 
power. 

THEOREM 4: Suppose Assumptions A.1(a) and A.2-A.3 hold. Define 

Mln = (2nQ2( fn;fn?)- Cn(k))/(2Dn(k))1/2, 

M2an = (2nH2 (fn; - Cn(k))/(2Dn(k))1/2, 

M3an = (nI( fn; 
n 

Cn(k))/(2Dn(k))1/2, 

where fn? is as in H with a 1p/4In/n'2 iLet Pn , PnIn O. Then Min d 
N( ,t(k), 1), where AMk) = 2irf f 7r g2(w) dw/(2D(k))1/2. If in addition Assump- 
tion A.1(b) holds and p3n/n -* 0. Then M2an -Mlan = op(1), M3an -Mlan = op(1), 
M2an d N( ,u(k), 1), and M3an d N( tk(k), 1). 

The asymptotic power of the MJa, is limn OO Pr(Mjan > C;) = 1 - O(C; - ,l(k)), 
where ( is the cdf of N(0, 1) and C; is the upper-tailed critical value at level 4. 
Therefore, the j are asymptotically equally efficient under H with an= 
pn/4/n1/2. Asymptotically, there is no optimal choice of Pn: the slower Pn grows, 
the more powerful are the Mja, because Han is farther away from Ho.5 Because 
an is slower than the parametric rate n1 /2, the jn are less efficient than 

5 If a higher order approximation to the distribution is made, we expect that there will be a 
trade-off between size and power in choosing Pn. Thus, one can choose an optimal Pn to minimize 
both Type I and Type II errors using a suitable criterion. 
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TESTING FOR SERIAL CORRELATION 845 

parametric tests under Han. Of course, this should not be taken too literally. For 
example, if pn = n l5, an n - 12+1/20 is only slightly slower than n-12i 

Because ,u(k) depends on k, different kernels may deliver different power. 
Suppose Pn = cnV, 0 < c < ?, 0 < v < 1/3. Then, following an analogous reason- 
ing of Pitman (1979), we obtain that for any Min that uses k1 and k2 respec- 
tively, the relative asymptotic efficiency of k2 with respect to k1 is 

AREp(k2; kl) = [D(k )/D(k2)] /(2 v). 

Therefore, the relative efficiency of the Bartlett kernel (kB) to the truncated 
kernel (kT) is AREp(kB; kT) = 51/(2- v)> 2.23.6 In fact, other commonly used 
kernels are all more powerful than the truncated kernel. 

We now derive the optimal kernel that maximizes the power of our tests over 
some proper class of kernel functions. Let r be the largest integer such that 

k(r) - lim (1 - k(z))/IzlT 
z 

o 

exists, and is finite and nonzero. We consider a class of kernels with r = 2: 

KG(T) = {k(-) satisfies Assumptions A.1 with k(2) = T2/2 > 01. 

The condition k (2) = T2/2 plays a role of normalization. For any k E K(T), the 
bias Efn(wJ) -f(wJ) =Pn k(2)f(2)()(1 + o(1)) under proper conditions (i.e. f is 
twice continuously differentiable on [-r, r]). Thus, with the same Pn, any two 
kernels in K(T) will deliver estimates with the same asymptotic bias. This 
normalization excludes some meaningless comparisons. Otherwise, two kernels 
that have the same shape but are scaled differently will deliver different powers 
when the same Pn is used. The class K(T) includes the Daniell, Parzen, and QS 
kernels, but rules out the truncated, Bartlett, and general Tukey kernels. 

THEOREM 5: Suppose conditions of Theorem 4 hold, and the jn are defined as 
in Theorem 4. Then under H with an - p1/4/n /2, the Daniell kernel kD(z) = 

sin(V3rz)/(x/irz), z E (-cc, cc), maximizes the power of the Mja over K(T). 

The Daniell kernel is different from the QS kernel, which is optimal within 
K(T) in the context of spectral density estimation using various mean squared 
error criteria (e.g. Andrews (1991) and Priestley (1962)). For hypothesis testing, 
the QS kernel can be worse than many other kernels. This conclusion is not 
peculiar to the jAn considered here (e.g. Hong (1996)). While Theorem 5 is of 
some theoretical interest, some commonly used kernels have rather close values 
of D(k). For example, the Daniell, Parzen, and QS kernels have D(k) = 

0.6046/r, 0.6627/r, and 0.6094/r respectively. Therefore, we expect little 
difference in power among these kernels. 

6The Bartlett kernel kB(z) = (1 - Izl)l[lzl < 1], and the truncated kernel kT(Z) = 1[IzI < 1]. 
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5. ASYMPTOTIC GLOBAL POWER 

While local power analysis provides useful insights, it is by no means a 
complete account of asymptotic power properties. In particular, Theorem 4 
implies that the MJa are asymptotically equivalent under H so it is difficult to 
differentiate these tests using Pitman's criterion. In practice, however, these 
tests may lead to different decisions. To examine their relative efficiencies under 
HA, we have to use nonlocal power analysis. 

We first establish consistency of our tests under HA. Under HA, a is generally 
not consistent for a in (1). Consequently, the residual {u,) is biased for {uj, 
because it contains specification errors as well as {uj}. This would complicate the 
analysis in establishing consistency of our tests. For simplicity, we consider the 
static regression model 

(8) Y=c+a(i)(B)Xi + + a(q)(B)Xqt + ut (t= 1,2,..., fn). 

Now a is a (q + 1 + EL 1 mj) x 1 vector consisting of all the unknown coeffi- 
cients in (8). The OLS estimator a is consistent for a under HA, although 
inefficient. Hence, {ut) is consistent for {utj. The following assumptions describe 
the dependence structure of {utj. 

ASSUMPTION A.4: {utj is a mean zero fourth order stationary process with 
Eo= - .R2(j) < oo and E7i _0 Eoj= -0 l= - IK4(i, 1)1 < oo, where K4(i, j, 1) is the 
fourth order joint cumulant of the distribution of {ut, Ut+i Ut+j9, ut+). 

ASSUMPTION A.5: (a) There exists some 8> 0 such that f(c) ? 8 for all 
w E [- '-, 'ir; (b) f(co) is continuous on [- 7r, 7r]. 

Assumption A.4 allows for fractionally integrated processes I(d) with d < 1/4, 
thus including some long memory processes. The fourth order joint cumulant 
K4(i, g, 1) is defined as 

K4(i, j, 1) =E(utut+iut+jut+,) -E iitit+iiut+jiit+1 , 

where {it) is a Gaussian sequence with the same mean and covariance as {ut). 
The cumulant condition is a standard assumption in time series (e.g. Anderson 
(1971) and Hannan (1970)); it characterizes the temporal dependence of {ut). 
When {ut) is a Gaussian process, the cumulant condition holds trivially because 
K4(i, j, 1) = O for all i, j, 1. If {ut) is a fourth order stationary linear process with 
absolute summable coefficients and innovations whose fourth moments exist, 
the cumulant condition also holds (e.g., Hannan (1970, p. 211)). More primitive 
conditions (e.g. strong mixing) can be imposed to ensure the cumulant condition, 
but such primitive conditions will rule out strongly dependent processes.7 

7I thank Professor P. M. Robinson and one referee for pointing out this. 
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Assumption A.5(a), used for M2n and M3n, allows for spectral densities that 
are infinity at w = 0, as with "fractional noise" and fractionally differenced 
ARIMA processes, the two most popular long memory models (cf. Robinson 
(1991b, Section 5)). Assumption A.5(b) helps ensure consistency of M3n; it rules 
out long memory processes. 

THEOREM 6: Suppose A.1(a), A.3-A.4 and HA hold. Let Pn -c, pn/n 0. 
Then 

(pl/2/n) - P Q2(f; f0)/(2D(k))1/2 

Suppose in addition A.1(b) and A.5(a) hold. Then 

(pl/2 n)M2n *P 2H2(f; f)/(2D(k)) /2. 

If furthermore A.5(b) holds and p2n/n -O0, then 

( pl/2In) M3n -*P I(f f; fo) I(2 D(k ))1/2 

Thus, the Min are all consistent against HA; in particular, Mln and M2n are 
consistent against long memory processes I(d), d < 1/4. We note that Robinson 
(1993) proposes an F-test that is also consistent against long memory processes 
and has many other appealing features, especially having an exact null distribu- 
tion under the Gaussian case. 

The rate at which the Mj,, diverge to infinity is n/pl/2. The slower Pn grows, 
the faster will the Mjn diverge to infinity, and so the more powerful will be the 
Mj,1. This conclusion on Pn~ is the same as that reached under Han. We now use 
Bahadur's (1960) asymptotic slope criterion to investigate relative efficiencies 
among the Min. The basic idea of Bahadur is to hold the power fixed and 
compare the resulting test sizes. Bahadur's efficiency is defined as the limit ratio 
of the sample sizes required by two tests to achieve the same asymptotic 
significance level (p-value) under a fixed alternative. Geweke (1981), among 
others, has applied this criterion in the econometric literature. Extending 
Bahadur's (1960) approach, we obtain the following result. 

THEOREM 7: Suppose Assumptions A.1, A.3-A.5 hold. Let pn = cn', where 
0 < c < c, 0 < v < 1/2. Then Bahadur's asymptotic relative efficiencies among the 
Mj, under HA are 

AREB(AI'lfl;A'2fl) = [Q2(f;fo)/4H2(f;fo)]l/( ) 

AREB(Ml2n; M32n) = [2H2(f;fO)4/I f;f)]/(2 v) 

AREB(M3n; Mln) = [2I(f; fo)/Q(f;f0)](2 

When f -*fo, the three Bahadur's efficiencies converge to unity, delivering 
the same conclusion as Pitman's criterion. When f is far away from fo, however, 
the three divergence measures are not equal in general. It would be interesting 
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to characterize the interrelationships and inequalities among the three diver- 
gence measures so that relative power ranking is possible. We expect that such 
characterizations will depend on dependence pattems of {uj}. Studies (e.g. Ullah 
(1993) and references therein) on interrelationships and inequalities on various 
divergence measures between probability distributions seem useful here. 

Bahadur's (1960) asymptotic slope of a test statistic is the rate at which minus 
twice the logarithm of the asymptotic significance level goes to infinity as n -* o*. 

A larger asymptotic slope implies a faster rate at which the asymptotic signifi- 
cance level decreases to zero as n -) oo. It can be shown that the rate at which 
minus twice the logarithm of the asymptotic significance level of the Mjn goes to 
infinity is n2/pn. This rate is faster than the rate n of parametric tests (including 
both asymptotic normal and x2 tests; see Bahadur (1960)). Therefore, the Min 
have an infinitely larger asymptotic slope than parametric tests under HA, i.e. 
the asymptotic significance level of the Mjn decreases to zero faster than that of 
parametric tests. This conclusion about the relative efficiency between the Min 
and parametric tests under HA is in sharp contrast to that reached under Han. 

It can be shown that for any Min Bahadur's relative efficiency of k2 to k1 is 
AREB(k2; k1) = [D(kj)/D(k2)]l/(2 - v) under the conditions of Theorem 7. This 
is the same as that obtained for the Pitman's criterion. Hence, the discussions 
on the kernel in Section 4 apply here. 

6. MONTE CARLO EVIDENCE 

We now examine finite sample performance of our tests in comparison to 
some commonly used tests for serial correlation. Consider the data generating 
process 

(9) Yt=c + ajYt>1 + a2Xt+,Ut 

where the exogenous variable Xt = 0.8Xt-1 + vt, and the vt are NID(0, 3). We 
set a = (c, a1, a2)' = (1,0.5,0.5)'. Let {(et be NID(0,1) and {et) be UID(0, 1). 
We consider four processes: (a) ut = et; (b) ut = et; (c) ut = 0.3ut1 + et; (d) 
(1 - B)035ut = et. Both (a) and (b) permit us to examine size performances 
under normal and non-normal (uniform) white noise errors. Process (c) is the 
widely used AR(1); and (d) is the fractionally differenced ARIMA(0,0.35,0) 
process, whose autocorrelation decays at a hyperbolic rate as the lag increases. 
This long memory process may arise from aggregation of time series data and 
has become more and more popular in time series modeling. We generate (d) 
using Davies and Harte's (1987) algorithm. Two sample sizes n = 64, 128 are 
investigated. For each n, we set the initial value Y0 = 0 and generate 2n + 1 
observations using (9), with the first n + 1 observations being discarded to 
reduce the effects of the initial value. The simulation is conducted using the 
GAUSS random number generator on an IBM RISCsystem Workstation, Model 
570, at Cornell University. 
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We compare our tests with those of BP, LB, and Breusch (1978) and Godfrey 
(1978). Both M2n and M3n are computed using the integration procedure 
INTEQUAD1 in the GAUSS program, with the order of the integration being 
set equal to 40. To examine the effects of using different kernels, we choose four 
kernels for the Min: 

Daniell (DAN): k(z) = sin(7rz)/7rz, z E (oo,oo); 

(1 - 6(7Tz/6)2 + 61rz/613, Izl < 3/Ir, 

Parzen (PAR): k(z) = 2(1 - lTz/61)3, 3/r < Izl < 6/Ir, 

0, otherwise; 

QS: k(z) = (9/5z2){sin(V5/13 Tz)/ 5/g3 z - cos(V5/03 rz)}, 

zE (-o-00, 00); 

Bartlett (BAR): k(z) = o1 tlhe rlw 1s. 
O, otherwise. 

Here, DAN, PAR, and QS belong to KT(/r/ O). BAR does not belong to K(T). 
To examine the effects of using different Pn, we first use three rates: (i) 

Pn = [ln(n)]; (ii) Pn = [3n02], and (iii) Pn = [3n03], where [a] denotes the integer 
closest to a. These rates deliver p = 4, 7, 10 for n = 64 and 5, 8, 13 for n = 128. 
The ln(n) rate, up to some proportionality, is the rate delivered by information- 
based criteria for (5). The rate n0.2, up to some proportionality, is the optimal 
rate minimizing the mean squared error of fn when the kernel with r = 2 is 
used; and the rate n0.3 is close to the upper bound on Pn for M2n and M3n. Both 
(ii) and (iii) violate the conditions of Theorem 2 (for MR), but we include them 
to examine the performance of MR with these rates. 

The above three deterministic rules allow us to investigate the effects of 
choices of Pn, but they are to some degree unmotivated. In practice, it would be 
desirable to choose Pn via data-driven methods. Beltrao and Bloomfield (1987) 
propose a form of cross-validation based on a pseudo log-likelihood type 
criterion under the Gaussian case. In an important paper, Robinson (1991a) 
considerably extends their results to non-Gaussian situations, showing that such 
chosen Pn is consistent for an optimal integrated mean squared error band- 
width. Such a global bandwidth is more appropriate here than the narrow band 
ones stressed in the econometric literature in autocorrelation-consistent vari- 
ance estimation (e.g. Andrews (1991)). The procedure can be conveniently 
implemented using fast Fourier transforms. In our application, we use a grid 
search for the optimal integer-valued Pn over the range from 2 to 20, with the 
grid interval equal to 1.8 It is possible to choose a real-valued Pn with a finer 
grid interval, but this is likely to have negligible impact. 

8 
In our simulation we find that the lower bound "2" (the smallest integer that ensures fn fo) 

works well for the samples under study. Robinson (1991a, p. 1346) points out that as n increases the 
cross-validation will tend to choose the per-set lower bound as the optimal pn, when ut is a white 
noise. Therefore, for large n, one might use a lower bound that is slowly increasing as n increases. 
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TABLE I 

REJECTION RATES IN PERCENTAGE UNDER NORMAL WHITE NOISES 

n: 64 128 

Pn: 4 7 10 CV 5 8 13 CV 

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 

M1n DAN 6.4 4.3 7.5 4.8 8.0 5.1 9.0 6.1 6.0 4.0 7.5 4.7 8.2 5.2 9.0 5.7 
PAR 6.6 4.2 7.6 4.9 8.2 5.2 9.6 6.3 6.4 4.2 7.7 4.7 8.3 5.4 9.6 6.0 
QS 6.5 4.2 7.5 4.8 8.0 5.1 9.7 6.6 6.1 4.1 7.4 4.7 8.0 5.3 9.7 6.1 
BAR 6.2 4.0 6.9 4.5 7.6 5.0 9.9 6.6 5.7 3.8 7.0 4.4 7.6 5.0 9.7 6.4 

M2n DAN 7.0 4.9 8.3 5.2 8.8 5.3 10.1 6.6 6.6 4.0 7.9 4.9 8.2 5.3 9.2 5.9 
PAR 7.0 4.8 8.0 5.0 8.1 4.6 10.2 6.7 6.7 4.2 7.7 4.7 8.1 4.8 9.7 6.1 
QS 6.9 4.8 8.2 5.1 8.5 5.1 10.6 7.1 6.4 3.9 7.5 4.8 8.3 5.1 9.9 6.3 
BAR 6.6 4.5 7.1 4.5 7.3 4.6 10.0 6.4 5.9 3.8 6.8 4.2 7.3 4.5 9.8 6.1 

M3n DAN 7.7 5.2 9.6 6.5 10.8 7.3 11.4 7.8 6.9 4.5 8.9 5.5 9.6 6.2 10.0 6.9 
PAR 7.5 5.1 9.2 6.0 9.8 6.4 11.3 7.7 7.2 4.4 8.3 5.3 8.9 6.0 10.5 6.7 
QS 7.5 5.1 9.3 6.3 10.0 6.7 12.0 8.3 6.9 4.2 8.3 5.2 9.1 6.1 10.8 7.0 
BAR 6.9 4.7 7.8 5.1 8.3 5.1 10.7 7.0 6.0 3.7 7.2 4.5 7.9 4.8 10.1 6.5 

l1n 7.2 4.4 6.6 4.1 6.4 3.9 7.7 4.9 7.6 4.6 7.2 4.4 

MR 8.1 5.1 6.8 4.1 5.6 3.0 7.9 5.1 7.9 5.0 7.0 3.5 

BP 13.6 6.6 10.5 5.2 8.8 4.4 12.7 6.6 10.8 5.6 9.4 4.9 

LB 16.5 8.5 14.4 7.6 14.1 8.2 14.2 7.5 13.0 6.9 13.0 7.1 

LM 11.1 5.5 9.6 4.3 8.0 3.6 9.8 4.8 9.2 4.4 8.0 3.5 

Notes: (i) Model Y, = 1.0 + 0.5Y,_ + 0.5X, + u,, where X, = 0.8X, 1 + v,, v, = NID(0,3) and u, = NID(0, 1). 
(ii) 5000 Replications. 

(iii) CV = Cross-Validation. 
(iv) DAN, PAR, QS, BAR = Daniell, Parzen, Quadratic-Spectral, and Bartlett kernels. 

For comparison, we use the same deterministic rules of Pn for BP, LB, and 
LM tests, where BP = n P_ 1 p 2(j) and LB = n(n + 2)EJ = 1(n _ j)-2(j). Both 
BP and LB are inappropriate for (9), but we still treat BP and LB as asymptoti- 
cally 2 x 1 under HO.' The LM test is computed as LM = nR2, where R2 is 
obtained from the OLS regression of ut on 1 _1, u t_ 9...,Ut-Pn Under 
Hog LM is asymptotically X2. (Strictly speaking, the asymptotic x2 of the LM 
tests is valid only when Pn is fixed.) 

Table I reports rejection rates (in percentage) under normal white noise 
errors at 10% and 5% nominal levels, based on 5000 replications. The new tests 
have reasonable sizes at the 5% level, but have greater difficulties of getting it 
right at the 10% level for small Pn. Faster Pn gives better size. The cross- 
validation works reasonably well, especially at the 10% level. For each Ming 
DAN, PAR, and QS perform similarly, but BAR performs slightly differently. 
Among the Ming M3n exhibits a little overrejection at the 5% level for large and 
cross-validated p,n, while M1n and M2n perform similarly. Both MT and MR 

9 We also use empirical critical values for BP and LB, so a power comparison based on these 
empirical critical values is appropriate. 
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have similar sizes. Unlike the Mj, the rejection rates of Mn and MR decrease 
as Pn increases; they have best sizes when Pn is small. LM works reasonably 
well. In contrast, LB exhibits strong overrejection for all Pn. The rejection rates 
of BP decrease as Pn increases, and has better sizes than LB. These findings 
differ from those found in the earlier literature. 

Table II reports sizes under non-normal (uniform) white noise errors. The 
results show that the performances of all the tests are similar to those under 
normal errors. 

We now examine power using both asymptotic critical values (ACV) and 
empirical critical values (ECV) at the 5% level. The ECV are obtained from the 
5000 replications under (a). The use of ECV permits us to compare power of all 
the tests on an equal basis. Table III reports the number of rejections out of 
1000 replications under the AR(1) alternative. For each pair k and Pn, the Min 
have roughly the same power. For each Mjin smaller Pn gives better power. The 
cross-validation gives better power than the deterministic rules in terms of ACV, 
and its ECV-based power is good. Given each Pn, DAN, PAR, and QS perform 
similarly for each Ming with DAN and QS very slightly more powerful than PAR. 
For deterministic Pn, BAR has slightly better power than DAN, PAR, and QS in 
most cases, but this is not inconsistent with Theorem 5, because Theorem 5 

TABLE II 

REJECTION RATES IN PERCENTAGE UNDER NONNORMAL (UNIFORM) WHITE NOISES 

n: 64 128 

Pn: 4 7 10 CV 5 8 13 CV 

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 

M1n DAN 6.1 3.9 7.9 5.0 8.9 5.2 8.8 5.4 6.2 4.1 7.2 4.5 9.1 6.0 9.4 6.2 
PAR 6.3 3.8 8.1 5.0 8.8 5.3 9.2 5.9 6.2 4.4 7.5 4.9 9.3 6.1 9.8 6.9 
QS 6.0 3.8 7.9 4.7 8.7 5.1 9.5 5.9 6.1 4.2 7.2 4.5 8.9 5.8 10.2 7.0 
BAR 5.9 3.7 7.4 4.4 8.2 4.8 9.7 6.2 6.1 4.1 6.6 4.4 8.3 5.3 10.2 6.7 

M2n DAN 6.9 4.4 8.7 5.5 9.1 5.7 9.9 6.2 6.5 4.4 7.2 4.8 9.1 6.0 9.9 6.7 
PAR 6.9 4.3 8.5 5.2 8.6 5.2 9.9 6.1 6.4 4.3 7.4 4.6 8.5 5.4 9.9 6.8 
QS 6.6 4.3 8.4 5.3 9.0 5.5 10.4 6.5 6.4 4.4 7.4 4.7 8.5 5.5 10.7 7.1 
BAR 6.2 3.9 7.2 4.4 8.1 4.6 9.8 5.8 6.2 4.2 6.5 4.3 7.3 4.7 10.7 6.6 

M3n DAN 7.4 5.0 10.0 6.9 10.9 7.5 11.0 7.6 7.5 5.0 8.9 5.4 10.7 7.2 11.0 7.4 
PAR 7.4 4.8 9.4 6.2 10.2 6.7 10.7 7.2 6.8 4.5 8.0 5.1 9.6 6.3 10.5 7.4 
QS 7.2 4.7 9.6 6.4 10.5 7.1 11.4 7.6 6.7 4.6 7.8 5.0 9.8 6.3 11.0 7.7 
BAR 6.5 4.2 8.0 4.9 8.8 5.4 10.4 6.4 6.3 4.3 6.8 4.5 7.8 5.2 10.4 6.9 

MlTn 7.6 4.8 7.2 4.6 6.4 4.0 8.6 5.3 8.9 5.7 8.4 5.0 

MR 8.9 5.6 7.8 4.0 6.0 3.1 8.5 5.9 9.0 5.5 7.4 3.8 
BP 13.7 7.0 10.8 5.4 8.7 4.5 13.2 7.1 12.5 6.6 10.7 5.3 
LB 16.5 8.9 14.8 8.3 14.2 8.0 15.0 8.4 14.9 8.2 14.4 8.2 
LM 11.9 6.4 10.2 4.7 8.4 3.6 10.3 5.5 10.6 5.3 8.4 3.7 

Notes: (i) Model Y, = 1.0 + 0.5Y, 1 + 0.5X, + u,, X, = 0.8X, 1 + v,, v, = NID(0, 3) and u, = UID(0, 1). 
(ii) 5000 Replications. 

(iii) CV = Cross-Validation. 
(iv) DAN, PAR, QS, BAR = Daniell, Parzen, Quadratic-Spectral, and Bartlett kernels. 
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TABLE III 

NUMBER OF REJECrIONS UNDER AR(1) ALTERNATIVE USING ASYMPTOTIC 
AND EMPIRICAL CRITICAL VALUES AT THE 5% LEVEL 

n: 64 128 

Pn: 4 7 10 CV 5 8 13 CV 

ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV 

Mln DAN 336 361 277 293 247 249 360 328 674 718 601 608 521 521 713 699 
PAR 323 352 270 280 240 238 378 339 654 683 584 593 501 496 738 716 
QS 335 359 279 296 242 242 383 339 670 712 598 607 516 516 742 719 
BAR 340 372 300 319 275 284 384 338 687 742 635 659 578 582 738 705 

M2n DAN 358 363 293 287 256 249 372 331 688 726 614 620 523 516 727 709 
PAR 343 357 277 280 235 251 386 348 668 698 596 608 503 514 747 725 
QS 354 363 291 291 251 251 393 341 687 722 614 628 524 525 745 723 
BAR 351 372 306 314 275 291 380 346 703 745 643 665 579 606 738 718 

M3n DAN 370 365 311 282 286 244 390 331 704 725 627 613 547 509 735 698 
PAR 355 356 295 274 267 246 398 340 676 695 608 606 530 511 753 718 
QS 354 363 291 291 251 251 405 339 692 721 627 623 544 518 750 716 
BAR 351 372 306 314 275 291 388 332 706 743 651 678 590 606 745 714 

mTn 181 205 164 180 151 170 440 450 379 396 288 315 

MR 203 203 152 179 106 151 468 468 337 346 218 262 

BP 236 205 181 180 156 170 501 450 402 396 308 313 

LB 274 204 234 175 216 160 525 441 433 385 357 301 

LM 232 224 173 193 122 160 503 518 399 416 272 332 

Note: (i) Model Y,= 1.0+ 0.5Y,_1 + 0.5X, + u,, X, = 0.8X,_ 1 + v,, v, = NID(0,3), and u, = 0.3u,_ 1 + a,, ,= NID(0, 1). 
(ii) 1000 replications. 

(iii) ACV = asymptotic critical value, ECV = empirical critical value. 
(iv) CV = cross-validation. 
(v) DAN, PAR, QS, BAR = Daniell, Parzen, Quadratic-Spectral and Bartlett kernels. 

rules out BAR. As expected, the M- are more powerful than LM, MT , BP, MR out i~~~~~~i n' 

and LB. The latter five tests have similar power against the AR(1) altemative. 
Table IV reports power against the fractionally differenced ARIMA(0, 0.35,0) 

process. Given each pair k and Pn, the M. have similar power, although there 
seems to be rather weak evidence that Min has very slightly better power than 
M2n, which in turn has very slightly better power than M3n. For all iM,n a slower 
Pn gives better power. Again, the cross-validation delivers better power than 
deterministic rules in terms of ACV, and its ECV-based power is also good. 
DAN, PAR, and QS have similar power. For deterministic Pn, BAR has very 
slightly better power. The Mj. are more powerful than M1T 9 BP, LB, LM, and 
MR. 

To summarize, (i) for the new tests, the choice of kemels (other than the 
truncated kernel) has little impact on size and power; the truncated kernel, 
which delivers a generalized BP test, has lower power than other kernels. (ii) 
The choice of pn has relatively significant effects on size and power. A faster pn 
gives better size, while a slower pn gives better power. The cross-validation 
procedure of Beltrao and Bloomfield (1987) and Robinson (1991a) works rea- 
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TABLE IV 

NUMBER OF REJECIIONS UNDER FRACrIONAL ARIMA(0, d, 0) ALTERNATIVE 
USING ASYMPTOTIC AND EMPIRICAL CRITICAL VALUES AT THE 5% LEVEL 

n: 64 128 

Pn: 4 7 10 CV 5 8 13 CV 

ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV ACV ECV 

Mln DAN 448 471 391 412 362 363 452 431 844 869 823 831 780 780 861 855 
PAR 441 465 391 396 353 351 472 440 839 855 815 824 770 770 864 857 
QS 448 472 397 411 360 360 473 441 844 863 821 828 778 778 870 856 
BAR 449 483 411 435 396 399 466 430 848 881 836 851 808 810 869 852 

M2n DAN 432 439 379 371 344 339 445 414 837 848 796 798 726 723 848 835 
PAR 421 433 365 365 324 341 464 429 830 846 786 793 711 717 857 847 
QS 429 441 377 377 343 343 468 422 834 851 792 799 724 724 863 842 
BAR 435 462 393 408 358 375 449 418 838 868 811 831 772 787 858 843 

M3n DAN 441 435 391 364 352 323 457 403 832 847 783 776 720 690 844 812 
PAR 425 426 371 357 341 313 472 411 826 837 781 778 700 684 854 840 
QS 431 430 385 365 355 324 478 414 830 846 792 791 720 701 861 835 
BAR 434 454 396 399 363 363 457 405 839 864 803 822 768 775 857 835 

mTn 311 331 254 278 213 247 738 744 672 686 586 615 

MR 275 275 184 211 122 189 656 656 552 565 388 434 

BP 367 331 279 278 231 247 770 743 691 685 606 615 

LB 398 326 332 265 291 230 781 736 713 676 658 598 

LM 315 307 238 263 177 228 730 739 649 660 530 573 

Notes: (i) Model: Y= 1.0 + 0.5Y + 0.5X, + u,, X, = 0.8X,- + v,, v= NID(0,3), and u, = (1 - B)-035e,, e= 
NID(0, 1). 

(ii) 1000 replications. 
(iii) ACV = asymptotic critical value; ECV = empirical critical value. 
(iv) CV = cross-validation. 
(v) DAN, PAR, QS, BAR = Daniell, Parzen, Quadratic-Spectral, and Bartlett kernels. 

sonably well in balancing Type I and II errors and is therefore recommended for 
use in practice. (iii) Among the new tests, Min and M2n have relatively robust 
sizes, while M3n exhibits a little bit of overrejection in some cases. The M. have 
similar power under each of the two alternatives. (iv) The M. have better 
power than LM, BP, LB, Mln, and MR against both alternatives. 

7. CONCLUSION 

This paper proposes three classes of consistent tests for serial correlation of 
unknown form for the residuals from a linear dynamic regression model. The 
tests are based on comparison between a kernel-based spectral density estimator 
with the null spectral density, using a quadratic norm, Hellinger metric, and 
Kullback-Leibler information criterion respectively. The three classes of tests 
are asymptotically equivalent under a class of local alternatives, but their 
relative efficiencies under the global alternatives depend on the relative magni- 
tudes of the divergence measures. The asymptotic distributions of our tests are 
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854 YONGMIAO HONG 

all standard normal, and remain invariant when the regressors include lagged 
dependent variables. Many kernels are more efficient than the truncated kernel, 
the latter delivering Box and Pierce's (1970) type tests. A simulation study shows 
that the new tests have better power than the Lagrange multiplier tests of 
Breusch (1978) and Godfrey (1978) and the portmanteau tests of Box and Pierce 
(1970) and Ljung and Box (1978) against an AR(1) process and a fractionally 
integrated process. The cross-validation procedure of Beltrao and Bloomfield 
(1987) and Robinson (1991a) works reasonably well in choosing the smoothing 
parameter of the spectral estimates and is thus recommended for use in 
practice. 

Department of Economics, Comell University, Uris Hall 454, Ithaca, NY 14853, 
U.S.A. 

Manuscript received March, 1994; final revision received June, 1995. 

MATHEMATICAL APPENDIX 

For notational simplicity, we consider here the regression model 

(Al) Yt = c + a1Yt_l + a2Xt + ut (t=,2. n), 

where I a II < 1 and the exogenous variable Xt is covariance stationary with EXt2 < oo. The proof for 
(1) is completely analogous, with more tedious notations. 

Throughout, we put kn1 = k(j/pn), Zjt = utut_j, and denote A, A1, A2 as generic constants that 
may differ from equation to equation. We define p(j), R(j), and fn exactly as p(j), R(j), and f 
respectively, with {ut} replacing {0t}. We also use lIf1 -f2Ik. = sup.E[-[I-,,] lfl(w) -f2(w)I. 

PROOF OF THEOREM 1: The proof consists of Theorems A.1-A.2 below. 

THEOREM A.1: Suppose A.l(a) and A.2 hold. Let pn - oo, pnn -- 0. Then 

(n E k2j p2(j) - Cn(k) )/(2Dn(k))1/2 4d N(O, 1). 

THEOREM A.2: Suppose A.l(a) and A.2-A.3 hold. Let pn - oo, pn/n -*0. Then 

n-1 

k 2j( p2(j) _ p2(j)) = op(p1/2/n). 
j=l 

PROOF OF THEOREM A.1: Given pn/n -;0, R(O) - o"2 = Op(n 1/2) by Chebyshev's inequality, 
and ijn-1l k2jR2(j) = Op(p./n) by Markov's inequality, we obtain 

n-1 n-1 
2 k2 k2(j) = -4 E k21R2(j) +op(pII2/n) = n-o 4(Cn + W,) +op(pn/ /n) 

j=1 j=1 
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where Cn =-n E>1' Ej+ 1 kn1ZjZtj and Wn = n- En- Ek1+2 E-t + 1 2knjZjt Zj. Noting En = 

o4Cn(k) and E[Et1j ( - o4)]2 = 0(n), we obtain 

n- n2 

var(Cn) = n-2E E knj 1 (Zt- 4) =0(p0n/n) 
-j=l t=j+l1 

by Minkowski's inequality. Hence, p,-1/2( 4'c0Oin - CA(k)) = op(l) by Chebyshev's inequality and 
pn/n -O. 

It remains to show (2Dn(k))-' /2o 4~Wn d N(O, 1). Put wjts = 2ZjtZjs. Then 

In n -2 n t -1 

Wn= n-l 1 
kn2.+n-l 

n 
kn2j wE twjs=Wln+Vl , say, 

j=1 j=l + 1 jt=j+2 s=j+1 

where we choose ln such that ln/pn -4 co, ln/n - 0. Next, we partition 

in 

Win n-1 1; k 2n 

j=1 

n n 1 n t1 21,+ 2 t-1 In+ 1 n 
X E E + E E + , F, + F, E w+ts 

t=21+3 s=l1+2 t=21+3 s=t-1n t=l,+3 s=l,+2 s=j+l t=s+l 

=Un + V2n + V3n + V4n, say- 

It follows that Jn = Un + E4 Vjn We shall show (i) p- 1/2 p(l) for =1,2,3,4 and (ii) 
(2 o-ODn(k))-' 2L] 1 N(O, 1). We now verify (i). Given Assumption A.2, we have that for t1 > sl, 
t2 > s2 and 1 <?l, i2 <n - 2, 

(A2) E(WjltlSlWj2t2S2) = E(Wj1t1S1Wj2t2S2)t ,t2 5s1,t1 -j2 52 tl -8l- 

Using (A2), we have EV12n < 2, E=-12+ 1 kn4 + 2n_-=l(E%n12+lknj)2 = o(PnX) where 
p,-' -2+ 1 -n2 0 given Pn-4 0, l?n/pn -? ?. Similarly, EV22n = IpPnln/n +p,21l/n), EV3 = 

0(pnl, /n2 +Pnln/n2)l EVn = ?(pnln/n +npl/n). Hence, (i) follows by Chebyshev's inequality. 
Next, we verify (ii). Put Unt = 2ut El" 1 k 2ut-Hjt1H where Hjt - s=l+2 j. Then 

Un =n- Et =21 +3 Unt and {Unt, FtJ } is a martingale difference sequence, where Ft is the cr-field 
consisting of u5, s ? t. Put o- 2(n) = EUn2. We apply Brown's (1971) theorem, which implies 
o-'(n)Un d N(O, 1) if (a) o-2(n)n-2 En +3E(U 2l[UntI> eno-(n)]) -O for every e > O and (b) 

-2(n)n2 E_t= 21 + 3 Un2t -p 1, where &n2t = E(Un2t I F ) 
We first show 20-08pnD(k)/o-2(n) -4 1. Because u ti is independent of Hjt-l - 1 for 1 < i, ]< ln, 

we obtain EUn2t = 4o-8(t-21 -2)E>n 1 k 41 t 2 21 + 3. It follows that 

In 
(A3) o-2(n) = 2o-8n2(n - 21 - 1)(n - 2 -2) 4 = 2o-pnD(k)(1 + o(l)) 

j=1 

given Pn -? 00, inpn 
- oo, and ln/n 

- 0, where p 
- 

E1n= 1 k 4 D(k). 
We now verify (a). Noting u ti is independent of Hjt -l - 1 for 1 < i, j < ln, we have 

EnJt = 16/L4E[ E1 knjUt-jHjtln- 1 <48 /4 [E knj(EHjt-_ln) / = Pn 

where supl < j < EH4l = 0(t2). Hence, o-4(n)n -4 En21+3 EUn4t = 0(n -1). This proves (a). 
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To verify (b), we show o-4 (n)E(LI2 - o-2(n))2 - 0, where U2 = n-2 Et=21 + b,. By definition, 
we have Un2, = 4o-2[Ej= 1 k2ut_jHj _ 1]2. We decompose 

In In j-1 

(A4) Un2t=44o-J 02 k jut jH,2t1 + 8co n n k Ut _t - ln _Htln 1 
j=1 j=2 i= 

= 4oJ02Bnt + 4o-02A1nt, say, 

where 

In t-In- 1 In t-In- 1 s- 1 

(A5) Bnt= kn4ju t_j Zl.2s + 1: k njUt_j Wisr 
j(= 1 S=n+2 j( ) S=In+3 r=ln+2 

=Cnt + A2nt, say, 

where, as before, Wjsr = 2ZjsZjr. Furthermore, we can decompose 

1 In t-In 1 In 
(A6) C,-= 2 EUn2t+ k t,_ (Z? - o4) + (t-21 _j 

?o j=1 S=In+2 j= 

= (4oJ2) EUn2 +tA 3nt A4n, say. 

Combining (A4)-(A6) yields On2 - o- 2(n) = 4on -2 Ej=1 Et= 21n+ 3 jnt Hence, it suffices to show 
or-4(f)f4E(Et=21 +3 Ajn)2 0 for j = 1,2,3,4. Noting u,-i is independent of Hjt -1, 1 i, 
j? < i, we have EA 2 = 4oJ04 yl=2 Ei- 1 4 4 E(Hi 1H2 2-1) = 0(t2p,2) by Cauchy-Schwarz 
(C-S) inequality and EHljt = 0(t2). For s <t - in, it is easy to show E(Al ,Alns) = 0. It follows 
that 

n 2 

(A7) n-4E Alnt =n -4 
E(A1ntAins) = 0(P2ln/n) = ?(pn2) 

t=21n+3 It-sIin 

by the C-S inequality and in/n -4 0. Next, noting u t-i is independent of Z1s for 1 S i, j < ln, S < t - ln, 
and using (A.2), we have EA2 = 0(t2pn + tp,2). It follows by Minkowski's inequality that 

(A8) n-4E( , A2n) ?n-4( 2 1/2 ) (pn)= (p2) 
t= 21n +3 t= 21n +3 

Similarly, EA23n 2 ,i4(EI.2 1 k4 J[E(Et-lnI +(Z2 - (7O4))2]1/2)2 = 0(tp 2) by Minkowski's inequality and 

E[Et- l,n -I (Z.2 _- 0.4)]2 = 0(t). Therefore, 

) 2 In2 
(A9) n-E4 E A3, < n- 

- 
(EA2n1)/ = 0(p,2/n) =o(p2). 

t 21n+3 t=21n+3 

Finally, because EA24n = (t - 21n 2 J) = 1 kniE(u t 1-c ?2)2 = 0(t2p0), we have 

(A10) n4 A4n) 
2 

E (EAn) (Pn)=(Pn 
t 21n+3 t=21n+3 

Combining (A7)-(A10) yields o--4 (n)E(Ln2 -_ 2(n))2 _4 0. If follows that oc- '(n)Un -A N(0, 1) by 
Brown's theorem. Because pn Dn(k) - D(k), we have (2O8Dn(k))-2bn d N(0, 1 ), i.e. (ii) holds. 
This completes the proof. Q.E.D. 
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PROOF OF THEOREM A.2: The result follows if Eyn-1' k2.(R2(j) -R2(j))-o_(p'2/n). Because 
R - = (A(j)- + 2Rf(jXR'(j) - A(j)), we shall show (i) E" - 1 k 1(R(j)- = 

Op(n') and (ii) E%n-' kn R jI(nj)- = Op(pn/2/f). 
Put Ant = (c-c) + (a-a1)Y1 + (2-a2)Xt. Then ut = ut ,nt, and for j 2 1, 

n n n 

(All) R(j)-R(j)= -n-1 , Antut-1-n-' uti,-+n-' tnt tnt-j. 
t=j+ 1 t=j+ 1 t=j+ 1 

We first verify (i). Using (All), we obtain 

n-1 n -1 n 2 

(A12) k _ ))2 < 4nk-2 kntUt_j 
j= j= t=j+l1 

+ 
tnt-j) 

+ 
ntAtj 

t=j+ 1 t=j+ 1 

= 4T1n + 4T2n + 4T3n, say. 

It suffices to show Tn = Op(n') for j = 1, 2, 3. For the first term, we have 

n-i n 2 

<4()C-)2 E k (2j n-1 U_j 
j=l t=j+l1 

n- n 2 

= 4(aL-ca,1)2 E k )2j n-1 E u+-jY-, s 
j=l t=j+l1 

n -1 n 2 

+4(a' - a2 )2 E k 2j n1 E ut_jX, 
j=l t=j+l1 

=4(C-_C)2 Sln + 4(a-, 
- a, 

)2 
S2n + 4( a2 

- 
a2 

)2 
S3n, say- 

Here, Sln =OP(pn/n) by Markov's inequality and E lSlnl = O(pn/n). Similarly, S2n =Op(l) be- 
cause E 1S2j < Ejl kn(A11n n + A2a?(' )) = 0(1) by 1 a1 1 < 1 and Lemma A.1, which is given at 
the end of this proof. Finally, S3= Op(pn In) given E(n-1 En=+ujXt)2 = 0(n'-) by strict 
exogeneity of Xt. If follows from A.3 that Tln = Op(n 1) given pn/n - 0. Similarly, we can show 
T2n=op(n') We also have T3 <(n'-E,1=_Ak4)2 1'k 1=op(n'-), where n-lE7...14= 
OP(n- 1), as can be shown easily. Hence (i) holds. 

We now verify condition (ii). Using (All), we have 

n-i n-i 

~ kn21R(j)(R( j)-RA(j)) = - n 1 kn2jR(j) 
j=1 j=1 

n n n 

X-T4~-T5~+t E say. t nt-j E ntAntj 
t=j+ 1 t=j+ 1 t=j+ 1 

=T4n -T5n + T6n I say. 
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It suffices to show TJn = Op(AP/2/n) for j =4,5,6. For the first term, 

n-1 n \ n- 

T4n (c - c) F, knif?(j) n ut uj + (at-, -a) F, knj() 
j=1 t=j+l j=l 

X(n1 F, Ut-jyt-1 +('2 a2) F, kni f? n-1 F ut_jX,) 
t=j+l1 j=l t=j+l1 

= (c~ - C)S4n + ('1 - al)S5n + (&'2 a2)S6n, say. 

Here, S4n= 0P(Pn/n) because E 1S4n, I<E - kn1[ER2(k)]'/2[E(n-1 EJ )2]1/2 = /n) 
Similarly, S6n = 0p(Pn/n) by exogeneity of Xt. We also have S5n = Op(Pn/n + n- /2) because by 
the C-S inequality and Lemma A.1 below, 

n-in212 

EIS5 I? , k2j(ER2(j))1/2 E n-1 F U,_jY 

j=1 t=j+ 

n-1 n-1 

< 0 2 Al/2 n-1 1 kn2 + .2 Al/2 n- 1/2 1: k 2jlaClll 
j=1 j=1 

= O(pn/n + n-1/2). 

Therefore, T4n = 1P(P/2/n) given Pn -? ?o, Pn/n -4 0, and Assumption A.3. Next, T5n = op(p 1/2/n) 

by the C-S inequality, ,En= 1 kn21R2(nj) = OpP p/n), and T2n = op(n -) Similarly, T6n = opIp,/2/n) 
given T3n = op(n1). It follows that condition (ii) holds. Thus, the proof will be completed provided 
the following lemma is proved. 

LEMMA A.1: E(n1 E- =1+1 tu,Y_ 1)2 < Aln 1 + IA2(? 1) for all i 2 1. 

PROOF OF LEMMA A.l: We first rewrite (Al) as Yt = c0 + a2a(B)Xt + a(B)ut, where c0 = 

c/(1- a1), a(B) = (1-a1B)-1 = E aJBJ. Then for each j 2 1, 

E ( u__+2 < C 2E ut_) 
t=j+ 1 t=j+2 

?A n +2 nn 2~1) 

+ [ B2u) ?E utja(B)XtA1 +n [E utja(B)ut(B . 
t=j+ 1 t=j+ 1 

The first term is 0(n); the second term E[En j+ 1ut aB),1]2 = cr2 En=j+ EaBX_1 2= 

O(n) by strict exogeneity of Xe, EXt2 < Te, and reas1 < 1. For the third term, 

n 2 n 
O E uO-jaE B)utF, = 0 E[U,2 j(a(B)ut (1)2] 

t=j+ 1 t=j+ 1 

n t-1 

+ 2 E E E[ut-ja(B)ut-j][u,-ja(B)u,-j1 
t=j+2 s=j+l 

< Al n + A2 n2a 2(i 1), 

where E[u 2 j(a(B)ut-1)2] < 4E74 t0 a l2i <,Al and E[ut-ju,-j(a(B)ut-)Xa(B)u,- 1)] < 2crO4a 2(j - 

for s < t, as can be shown easily. The desired result follows immediately. Q.E.D. 

PROOF OF THEOREM 2: For j ,1 ,P,let U = (O, . .., O, ul ,Unj adU= 

(01. . O U1 .. , - j)' be n x 1 vectors with the first j elements being zero. Define U- = (01, ,U 
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and U=(U1..,U . Then R= u 
L7 (O' ( 1)' W U0/n6n2 by definition, where c2= 

n1 Et= l(d1-ut )2 jn = n 1n 1n . 
Put R =uon UL 'U- U )-l do/nR(O). Then R2R O2=n2((O)/2 - 1) = Op(n-') given 

j2 ? 1 and n2-RR(O) = Op(n-1). It follows that MR-MR = op(l), where MR = (nR2 - 

pn)/(2pn)1/2. Hence, it suffices to show MR - MTn = op(l). Now, 

Pn 12 
(A13) R2 _ F p2(j) = (U U- U-) U- do nR dU 

j=1 

= (R2/A(O))o'(A(O)I - d d )op, 

where Hp = (d d - (dt d )- d0 such that 00J, = 1. Put oP= 

{0 e RPn: 0'0 = 1} and n = supo E 69 ,MR(O)I -n-h UiU )6p1. Then 

Pn Pn n n 

i,=n sup En EIa 81- 
-1 

= 
Sp n 

1 E E 2 ? t-i't-j |OPni9Pnj 

OPn E i=1 j=1 t= 1 t=max(i,j)+ 1 

Pn n Pn j-1 n 

= sup n O, u - -iU- sup n E ~~Pni 5? t 2 OPni OPnj ?u 
it 

OPn CPn j=1 t=n-j+1 j=2 i=1 t=j+1 

n Pn j-1 n 

1n-l x, ~ut+2n-1 E E E Ut-iutj 
t=n-Pn+1 j=2 i=1 t=j+l 

Pn j-l n 

+ 2n-1 Ut-i nt-j 
j=2 i=1 t=j+1 

Pn j- 1 n Pn j-1 n 

+ 2n-1 , E Ut-jInt-i + 2n-1 nti A'nt-j 
j=2 i=1 t=j+1 j=2 i=1 t=j+l 

7=Tn + 27q2n + 2773n + 2q4n + 2r5 n, say, 

where ua =ut-Ant, Ant is as in the proof of Theorem A.2. It is straightforward to show that 

N)1n = Op(pn/n), 7)2n = Op(p2/n'/2) by Markov's inequality, 7n = 0p(p22/nl/2), q4n = 

0p(p,2/n'/2), and n = ?p(p2/n) by the C-S inequality and n - 1 ; n 12 = Op(n- 1). It follows 
that 7n = p(pn2/nl /2). Hence, we obtain (R2-- 1 ,9(]))/A2 = p0(p,2/n /2) = op(l) from (A13) 
and p,5/n 0. This implies R2 = Op(pn/n) because Ef-i1 p(j) = Op(pn/n). Consequently, R2 - 
rPnf 1 - no_(p /2/n) given p,5/n0, so MR-M'= op(l). Because Mn dN(0, 1) by 
Theorem 1, we have MR (and MR) d N(0, 1). Q.E.D. 

PROOF OF THEOREM 3: Put n(C)) = fn(w)/fi(&))- 1. We first show sup[, [ ]8n(C)I = op(l). 
Consider IIfn -fnIIn, and IIfn -foII.. We have IIfn -fnII1 = Op(pn/n1/2) because from (All) 

n-1 

(A14) W IknjI IR(j) -,(jl 
j=1 

n-1 n n n 

< 
n-l 
IknjI f /ntUtnj + ) nt'nt-j 

j=1 t=j+1 t=j+1 t=j+ 1 

<2 n Ik 1(~ E '2t ) 1~ u 2) + Iknln 
'2 
At 
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where pn-1 El -1 IknjI -4 fx Ik(z)I dz and En=1 Ait = Op(n-). Also, IA -f0Ik x = OP(pn/n1/2) be- 
cause Ejn- 1Ik IE IR(j)I =I O(pI/nl/2). It follows that 1ll -f0IIx=Op(p,-1/2) by the triangle 
inequality and pn/n - 0. 

Now, noting H2(fn;fo) = 2(1- fr(1 + f (n))/2f (w)do)), Q2(fn;f ) = fX (w)f0(w)dw, 
flr1r cn(cw)f0o(cw))dwl)=O0, and Ki +z)'/2 = 1-Z z+ 'z21 <Iz31 for small z, we obtain 

12H2( fo) - 2Q2(f; fo)I 

4 r[ (1 + n())/ 1 An(w)+ 1/22(w)]f(w)dw 

?4f I&?(w)IfO(w)dw 6 a fow)d 
,< 4f"ff I n3( &)) fof )) d., 

< sup |a(w)IQ2(fn; fo) = ?(pn/2/n), 

where Q2(fn; fO) = OP(pn/n). It follows that M2n -Mn = op(l) and M2n - N(O, 1). 
Next, we consider M3n. Let d2c(fn)={&)e[f-'r,7rr]:fn(w)=O}, the complement of Q2(f). 

Noting Iln(l +z)_z+'z21<1z31 for small z, fJ 6n())fo(w)dw= O and An(o)=)-1 for w)e 
Qc(fn), we obtain 

II(f' ;fo) - I2 
|fn -2 fn; fo 

= f( ln(l + 8n(w))f -) dw) + 2 8, ( 
&))f0(o) 

d 

f=IJ (ln(l + n (ot)-A()) + 2 
Sn2 &M)fo da))) 

+Jc(f)( ) + 

2n 

f?J 
f (ln(l + 

&M(-)) 
- n(w) + 

'Sn2 ))f(Mf 
) dw 

+f2 Jc(f 
ISan3(&))1fO(&)) d&| 

< _ I (n3W) dw = op(p1/2/n). 

It follows that M3n -Mn = op(1) and M3n d N(0, 1). Q.E.D 

PROOF OF THEOREM 4: Noting f2(w) =f0(w) + ang(w) under Han, we have 

(A15) Q2 (fgn;f2no ) = Q2(gfn; fo) + 2rran f g2(w) dw - 4rran f (fn(w) -fo(w))g(w) dw. 

We first show that the last term of (A15) is Op(pn/2/n). Write 

f (f(w) f-o(w))g(w) dw 

= fv (fn(w) -fn(w))g(w) dw + f (fn(o) -fo(w))g(w) dw. 
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Put gj= f' ,,g(w)eiijdw. Then the first term is Op(n-l/2) because IEJ> -lknj(Rj) -R(j))gj1 = 

Op(n-& 2) by the C-S inequality, Ej?=1 gj2 < oo, and E'l' k 2(R(j) -R(j))2 = as shown in 
the proof of Theorem A.2. Also, the second term is Op(n1 /2) because E>J-1` knjR( j)gj = Op(n -1/2) 
given E[E>-1' k fR(j)gj]2 = O(n -1). It follows that fJ zr(f(w) -fo(w2))g() dw=). 
Hence, the last term of (A15) is Op(pl/4/n) given an =P/4/nl/2' Consequently, Q2(fn; f,0) = 
Q2(fA; f0) + ( pl/2/n)2ir f g2( w) dw + OpIpn/2/n). This implies Ma = Mln + pu(k) + op(1) and 
Mln d N( pi(k), 1). The results for M2an and M3an follow also because it can be shown that 

a= M2 + pu(k) + op(l) and a = M3n + pu(k) + op(l) given pn3/n - 0, using an analogous 
proof for Theorem 4. Q.E.D. 

PROOF OF THEOREM 5: Given pi(k) = 2T frfr g2(w)dw/(2D(k))'/2, maximal power of the jn 
is obtained by minimizing D(k). Because k is the Fourier transform of K, k2 is the Fourier 
transform of the convolution of K with itself, i.e. k2(z) = fr,O G(A)eiAz dA, where G(A) = 
fJ 00 K(A')K(A - A') dA'. We have D(k) = 2 f 00 k4(z) dz = ,T f 00 G2(A) dA by Parseval's identity. 
Hence, minimizing D(k) over K(T) is equivalent to minimizing f' 0 G2(A) dA over A(T)= 
{K: R - R+I f oK(A)dA = 1, f 00 AK(A)dA = 0, J? 00 A2K(A) dA = T 2}, where A(T) is the dual set 
of K(T). By Ghosh and Huang (1991, Theorem 1), K*(A) = (2V3T)-11[jAI ? j/T] minimizes 
f G2(A) dA over A(T). Because kD is the Fourier transform of K*, it follows that kD minimizes 
D(k) over K(T). Q.E.D 

PROOF OF THEOREM 6: (a) We first consider M1. Given (p112/n)M1n = 
-Q2(fn; fo)/(2D(k))'/2(1 + o(1)), it suffices to show Q2(fn; f0) -p Q2(f; f0). Because 

Q2(fn; fO) = Q2( f;f0) + 2i f_( fn(w) -f())) do) 

+ 4r f (fn(w)) -f(w)))(f()) -fo( W)) d w, 

it suffices to show that the second term is op(l) because the last term will be also op(l) by the C-S 
inequality. We shall show (i) J Yt(f (w) -fn(W))2 d w = op(l) and (ii) f? 6 (fn(w) - f())2 dw = op(l). 

It suffices for (i) if Er' -'k2 (R(j)-R(]))2=Op(l). In the proof of Theorem A.2, we have 
obtained E7-' kn1(R) j)-R( j))2 < 4(T1, + T2n + T3n) where the T are as in (A12). Now, Tin< 
(E>=1 k)n -1 E k E- 1 U_ ) = Op(pn In), where n 1 _n1 4 = Op(n) under the as- 
sumed static model and Assumption A.3. Similarly, T2n = 0p(pn/n) and T3n = Op(p/n2)n Hence, 
condition (i) holds. 

To verify (ii), it suffices to consider 

1 (n-i 00 2 

27r J l , E A(j)e-ijw - E R(j)e-ijw) dw 

n-i 0 

= E (knjR(j) -R(j))2 + , R2(j) 
j=l j=n 

n-1 n-1 i 
< 2 F, (kj- 1)2 R 2(j) + 2 F, k2j(R?(j)_-R( j))2 + , 2j) 

j=1 j=1 j=n 

where the equality follows by Parseval's identity. The first term is o(1) by Lebesgue's dominated 
convergence theorem given kn1 - 1 - 0 as Pn -? 00 for all j 2 1 and E=0 R2(j) < oo. Next, because 
var(R j)) =n-1 i-n+n1(1- lilI/nXR(i +j)R(i -j) - K(j, i, i +j)) (cf. Hannan (1970, p. 209)), we 
have supj 1 var(R(j)) = O(n 1) given Assumption A.4. It follows that El 1 k2 -(R(j) -R(j))2= 
OP(pn/n) by Markov's inequality. Finally, Ej=n R2(i) = op(l) by A.4. Hence, condition (ii) holds. 
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Consistency of M1n then follows. (b) For M2,, it suffices to show H2(fn; fo) -4P H2(f; f0). This 
follows because by Assumption A.5(a), we have 

2 
Jr(fl/2( ( _1/2( ()2d, 

<8^-1fJ (/1l/2(w() _fl /2(w())2(f^l/2(w() +fl /2( wD)2 dw( 
-lr 

- 1 f_ _(( () f)( f))2 d = o2( ). 

(c) For M3n, we write 

(A16) I(fn; f0) = -Jf )ln(f(w)/f0(wDf0(w) dw- f )ln(fn( Cw)/f(( ))f0(wa)dw). 

1(fl) 12(_f1A) 

For the first term of (A16), we have 

JQf )ln(tf(w)/fo0(w))f0( w) d = 

=-I(f; f0) - 
Cf 

ln(f( 
( 

w)/f0( w))f0( w)) 

= -I(f; f0) + od(p), 

where the second term is op(l) given f}c(f ) dw? 8-2 fX zr(fn(w) -f(w)))2 dw= op(l) and 
I(f; fo) <00, which ensures absolute continuity of ,(Q) = I ln(f(If))/f0())f0(c))ddw-I. 

It remains to show that the second term of (A16) is op(l). We first show IA n-fIIo = Op(l). 
As shown in the proof of Theorem 4 (cf. (A14)), we have IA -fnIk - 0_(p /n12) Also, we 
have IIftn- EfnlI = 0_(pf/n1/2) by Markov's inequality and E EInf IkW1(R(j)f - ER(j))I < 
SUpj21 1{var(RA(j))}'/2Ejn-' IknjlI = 0(pn/nl/2 ) given Assumptions A.1 and A.4. Furthermore, lEA E - 
f lloo = o(1) given Assumptions A.1 and A.S, and Pn -?, as shown in Robinson (199la, Appendix A). 
It follows that lL ~fIIo = Op(l) by the triangle inequality and p2/nd0. Hence, we can use the 
inequality Iln(1 + z)I ? 21zl for small z near 0 to obtain 

f| f (fo() <nsur)/f( ))bfo( ))nd o2fI f(d2 )/f (fw)-1Ifof0()) d o) 

?28-1 (Jv_(f^(w) -f(w))2f0(w) dw))= oP(). 

It follows from (A16) that I(ft; fs) n I(f; ft). The consistency of M3p then follows. Q.E.D. 

PROOF OF THEOREM 7: Since A1n -A N(O, 1) under H0, the asymptotic significance level 
of son is - proof where emP4s the cdf of N(O, 1). Define - n = - 21n(1 - 1(M2)). Because 
ln(1h - J(a)) = - a2( + o(1)) as a M+ o (Bah adur (1960, Section 5)), we have 

(A17) (pn/n2)S1n = CJ2(k) = op(l) ( = 1,2,3), 

by Theorem 7, where Ci(k) = 2Q2(f; f0)/(2D(k))'/2, C2(k) = 2H2(f; f0)/(2D(k))'/2, and 
C3(k) = I(f; f0)/(2D(k))2 22 

We now consider two sequences of test statistics {M=g} and {sjns under HA, iFj, i,j=1, 2, 3. 
Bahadur's asymptotic relative efficiency of Mand to -nis defined as the limit ratio of the sample 
sizes for both tests to attain the same asymptotic significance level under HA. Let nc,n1 be such two 
required sample sizes for {Mini} and {M n} respectively. Then Smn/S.n -P 1 as ni, rz1 -.0 Using 

ineualty ln( + ) < 1 I or mal znea ino1bti 

(A17) and pfo =cn1 we obtain the Bahadur's asymptotic relative efficiency of Min to Q.E.as 
AREB(M1 n; Mln) = lim=.o j ko(n1/no ) = [C7j(k)/CJ(k)]l/(>v)* The desired results follow imme- 
diately. Q.E.D. 
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